2012 Tall Fescue and Bromegrass Report

G.L. Olson, S.R. Smith, T.D. Phillips, G.D. Lacefield, and D.C. Ditsch, Plant and Soil Sciences

Introduction

Tall fescue (*Festuca arundinacea*) is a productive, well-adapted, persistent, soil-conserving, cool-season grass grown on approximately 5½ million acres in Kentucky. This grass, used for both hay and pasture, is the forage base of most of Kentucky's livestock enterprises, particularly beef cattle.

Much of the tall fescue in Kentucky is infected with an internal fungus (endophyte) that produces ergot alkaloids and results in decreased weight gains in growing ruminants and lower pregnancy rates in breeding stock, especially in hot weather. Varieties are now available that are free of this fungal endophyte or infected with a nontoxic endophyte. Varieties in the latter group are also referred to as "novel" or "friendly" endophyte varieties, because their endophyte improves stand survival without creating animal production problems.

Smooth bromegrass (Bromus inermis *Leyss*) is a perennial pasture and hay grass native of Europe. It has creeping underground stems or rootstocks from which the leafy stems arise. Smooth bromegrass is palatable to all classes of livestock, from emergence to the heading stage. Meadow bromegrass (Bromus biebersteinii Roem. & Schult) is a native of southeastern Europe and the adjacent Near East. It resembles smooth bromegrass but has only short rhizomes or none at all. Meadow bromegrass is densely tufted and has a similar growth habit to tall fescue. Hybrid bromegrasses are a cross between smooth and meadow bromegrasses. Alaska bromegrass (Bromus sitchensis), also called Sitka bromegrass, is a longlived perennial bunchgrass that will actively grow at moderate rates during the spring and summer season. It does not spread by rhizomes and is more suited to environments with harsh winters.

Prairie bromegrass (*Bromus wilde-nowii*) is a tall, cool-season, leafy short-

Table 1. Temperature and rainfall at Lexington, Kentucky, in 2010, 2011, and 2012.

		20	10			20	11			20	12 ²	
	Te	mp	Raiı	nfall	Tei	mp	Raiı	nfall	Tei	mp	Raiı	nfall
	°F	DEP ¹	IN	DEP	°F	DEP	IN	DEP	°F	DEP	IN	DEP
JAN	29	-2	2.40	-0.46	29	-2	2.10	-0.76	38	+7	4.80	+1.94
FEB	29	-6	1.38	-1.83	39	+4	6.34	+3.13	40	+5	5.39	+2.18
MAR	47	+3	1.05	-3.35	47	+3	4.76	+0.36	56	+12	5.64	+1.24
APR	59	+4	2.74	-1.14	58	+3	12.36	+8.48	56	+1	3.26	-0.62
MAY	67	+3	7.84	+3.37	64	0	6.72	+2.25	69	+5	4.02	-0.45
JUN	76	+4	4.61	+0.95	74	+2	2.61	-1.05	73	+1	2.42	-1.24
JUL	78	+2	5.49	+0.49	80	+4	6.29	1.29	81	+5	2.50	-2.50
AUG	78	+3	1.54	-2.39	75	0	2.89	-1.04	75	0	1.68	-2.25
SEP	71	+3	1.14	-2.06	66	-2	5.52	+2.32	67	-1	6.40	+3.20
OCT	59	+2	1.22	-1.35	55	-2	4.10	+1.53	55	-2	2.00	-0.57
NOV	47	+2	4.58	+1.19	50	+5	9.53	+6.14				
DEC	28	-8	2.15	-1.93	41	+5	5.58	+1.60				
Total			36.14	-8.41			68.80	+24.25			38.11	+0.93

¹ DEP is departure from the long-term average.

² 2012 data is for the ten months through October.

Table 2. Temperature and rainfall at Princeton, Kentucky, in 2010, 2011, and 2012.

		20	10			20	11			20	12 ²	
	Te	mp	Raiı	nfall	Tei	mp	Raiı	nfall	Tei	np	Raiı	nfall
	°F	DEP ¹	IN	DEP	°F	DEP	IN	DEP	°F	DEP	IN	DEP
JAN	31	-3	3.06	-0.74	32	-2	2.35	-1.45	40	+6	3.01	-0.79
FEB	33	-5	1.54	-2.89	40	+2	5.71	+1.28	54	+6	1.73	-2.70
MAR	48	+1	3.24	-1.70	50	+3	5.54	+0.60	60	+13	3.27	-1.67
APR	62	3	3.3	-1.54	61	+2	16.15	+11.35	60	+1	0.62	-4.18
MAY	69	+2	10.41	+5.45	66	-1	7.22	+2.26	71	+4	1.36	-3.60
JUN	79	4	4.82	0.97	77	+2	4.60	+0.75	74	-5	2.38	-1.47
JUL	80	2	2.73	-1.56	81	+3	2.98	-1.31	83	+5	1.40	-2.89
AUG	81	4	2.46	-1.55	77	0	3.95	-0.06	77	0	4.27	+0.26
SEP	72	1	0.94	-2.39	68	-3	3.86	+0.53	69	-2	5.45	+1.82
OCT	60	+1	0.97	-2.08	57	-2	1.35	-1.70	57	-2	2.94	-0.11
NOV	49	+2	3.98	-1.65	51	+4	9.12	+4.49				
DEC	32	-7	1.57	-3.47	42	+3	6.13	+1.09				
Total			39.02	-12.11			68.96	+17.83			26.13	-15.33

¹ DEP is departure from the long-term average.

² 2012 data is for the ten months through October.

Table 3. Temperature and rainfall at Quicksand, Kentucky, in 2010, 2011, and 2012.

		20	10			20	11			20	12 ²	
	Te	mp	Raiı	nfall	Te	mp	Rai	nfall	Tei	np	Raiı	nfall
	°F	DEP ¹	IN	DEP	°F	DEP	IN	DEP	°F	DEP	IN	DEP
JAN	31	0	4.09	+0.80	32	+1	2.63	-0.66	40	+9	4.60	+1.31
FEB	32	-1	2.82	-0.77	42	+9	3.94	+0.34	42	+9	3.49	-0.16
MAR	47	+6	2.38	-1.96	48	+7	4.66	+0.32	57	+16	3.34	-1.40
APR	60	+7	2.64	-1.46	60	+7	11.65	+7.55	56	+3	2.02	-2.08
MAY	67	+5	6.00	+1.52	65	+3	6.49	+2.01	69	+7	4.29	-0.19
JUN	76	+6	4.26	+0.44	73	+3	3.73	-0.09	71	+1	0.82	-3.00
JUL	77	+3	3.06	-2.19	78	+4	4.92	-0.33	78	+4	5.20	+0.45
AUG	77	+4	3.77	-0.24	75	+2	4.09	+0.08	74	+1	3.82	-0.19
SEP	69	+3	0.63	-2.89	67	+1	3.52	0	67	+1	10.05	+6.53
OCT	57	+3	1.33	-1.58	55	+1	4.16	+1.25	55	+1	4.21	+1.30
NOV	47	+5	3.88	0	50	+8	5.15	+1.27				
DEC	29	-4	3.15	-0.99	42	+9	4.25	+0.11				
Total			38.02	-9.32			59.19	+11.85			42.29	+2.97

¹ DEP is departure from the long-term average.

² 2012 data is for the ten months through October.

lived, perennial, deep-rooted bunchgrass. It was introduced from South America. Seedheads are produced throughout the growing season, and to maintain productive stands for several years, it is necessary to manage at least one growth cycle each year for seed production and natural reseeding. Some prairie bromegrasses are susceptible to winterkill. Mountain bromegrass (*Bromus marginatus*) is native to North America from Alaska to northern Mexico, where it can be found in many types of habitat. It is a short -lived, perennial, cool-season, sod-forming grass. Leafy growth and a deep, well- branched root system give protection on erodible slopes. It is similar to California bromegrass (*Bromus carinatus*), and some consider them to be synonymous.

All bromegrasses have several advantages over tall fescue, including retaining quality as they mature and better growth during dry weather, but they are generally less well adapted in Kentucky.

This report provides current yield data on tall fescue varieties and similar grass species in trials in Kentucky as well as guidelines for selecting tall fescue varieties. Tables 13 and 15 show a summary of all tall fescue and bromegrass varieties tested in Kentucky for the past 10-plus years. The UK Forage Extension Web site at www.uky.edu/Ag/Forage contains electronic versions of all forage variety testing reports from Kentucky and surrounding states and a large number of other forage publications.

Important Selection Considerations

Local adaptation and seasonal yield. Before purchasing tall fescue seed, make sure that the variety is adapted to Kentucky, as indicated by good performance across years and locations in replicated yield trials such as those presented in this publication. Choose high-yielding persistent varieties and varieties that are productive during the desired season of use.

Tall fescues are often classified as either "Mediterranean" or "Continental" types according to the area from which the parental material for the variety originated. In general, the Mediterranean types (e.g., Cajun and Fawn) are more productive in the fall and winter than the Continental types (such as Kentucky 31). Although they mature earlier in the spring, the Mediterranean types become dormant and nonproductive during the summer in Kentucky and are more susceptible than Continental varieties to leaf diseases such as helminthsporium and rhizoctonia. Therefore, Mediterranean varieties are less preferred for use in Kentucky than Continental types. Because Mediterranean varieties mature earlier in the spring, first-cutting yields are generally higher when the two types are harvested at the same time. However, the Continental types produce more in the summer, allowing for extended grazing.

Table 4. Descriptive scheme for the stages of development in perennial forage grasses.

Code	Description	Remarks
	Leaf development	
11	First leaf unfolded	Applicable to regrowth of
11	First lear unioided	Applicable to regrowth of established (plants) and to primary growth of seedlings.
12	2 leaves unfolded	Further subdivision by mean
13	3 leaves unfolded	of leaf development index
•	• • •••	(see text).
19	9 or more leaves unfolded	_
	Sheath elongation	
20	No elongated sheath	Denotes first phase of
21	1 elongated sheath	new spring growth after
22	2 elongated sheaths	overwintering. This character
23	3 elongated sheaths	- is used instead of tillering
25		which is difficult to record in established stands.
•		established starius.
29	9 or more elongated sheaths	
21	Tillering (alternative to sheath elong	1
21	Main shoot only	Applicable to primary growth of seedlingsor to single tiller
22	Main shoot and 1 tiller	transplants.
23	Main shoot and 2 tillers	
24	Main shoot and 3 tillers	_
•	• • •••	_
29	Main shoot and 9 or more tillers	
	Stem elongation	
31	First node palpable	More precisely an
32	Second node palpable	accumulation of nodes.
33	Third node palpable	Fertile and sterile tillers distinguishable.
34	Fourth node palpable	distiliguistiable.
35	Fifth node palpable	
37	Flag leaf just visible	
39	Flag leaf ligule/collar just visible	_
	Booting	1
45	Boot swollen	
	Inflorescence emergence	
50	Upper 1 to 2 cm of inflorescence visible	
52	¹ / ₄ of inflorescence emerged	
54	¹ / ₂ of inflorescence emerged	
56	³ / ₄ of inflorescence emerged	
58	Base of inflorescence just visible	
50	Anthesis	
60	Preanthesis	
60	Preantnesis	Inflorescence-bearing internode is visible. No
		anthers are visible.
62	Beginning of anthesis	First anthers appear.
64	Maximum anthesis	Maximum pollen shedding.
66	End of anthesis	No more pollen shedding.
00	Seed ripening	no more policit shedding.
75	Endosperm milky	Inflorescence green
85	Endosperm soft doughy	No seeds loosening when
		inflorescence is hit on palm.
87	Endosperm hard doughy	Inflorescence losing chlorophyll; a few seeds loosening when inflorescence hit on palm
91	Endosperm hard	Inflorescence-bearing internode losing chlorophyll; seeds loosening in quantitywhen inflorescence hit on palm.
93	Endosperm hard and dry	Final stage of seed development; most seeds shed.

Smith, J. Allan, and Virgil W. Hayes. 1981. p. 416-418. 14th International Grasslands Conference Proc. 1981. June 14-24, 1981, Lexington, Kentucky.

Table 5. Dry matter yields, seedling vigor, maturity, and stand persistence of tall fescue varieties sown September 11, 2009, at Lexington, Kentucky.

	Soodling	IV	laturity	14			Per	cent Sta	and					Yiel	d (tons/	acre)		
	Seedling Vigor ¹	2010	2011	2012	2009	20	10	20	11	20	12				20	12		
Variety	Oct 13, 2009	May 6	May 5	Apr 25	Oct 13	Apr 13	Oct 15	Mar 29	Oct 27	Mar 21	Oct 24	2010 Total	2011 Total	Apr 25	Jun 7	Oct 23	Total	3-year Total
Commercial Va	arieties—A	vailabl	e for Fa	rm Use														
Jesup MaxQ	3.8	57.0	53.0	50.5	98	100	99	98	100	100	100	3.58	3.88	1.20	0.59	0.65	2.44	9.89*
Bronson	3.1	57.5	54.5	46.3	98	100	99	100	100	100	100	3.25	3.97	0.91	0.62	0.68	2.21	9.43*
KY31+ ³	3.1	53.5	45.0	45.0	100	100	100	100	100	100	100	3.44	3.48	0.81	0.71	0.73	2.25	9.17*
Goliath	2.8	56.5	51.8	47.5	94	99	97	99	99	99	99	3.20	3.67	0.93	0.62	0.62	2.17	9.04*
Select	3.1	56.5	53.5	47.5	98	100	96	97	100	100	100	3.38	3.53	0.78	0.58	0.52	1.88	8.79
5CAN	1.0	57.0	53.3	50.5	53	93	97	96	98	99	98	2.37	3.33	0.93	0.53	0.54	2.00	7.70
Experimental \	Varieties																	
KYFA0701	4.0	57.0	50.5	46.3	100	100	98	99	98	99	99	3.47	3.80	1.02	0.56	0.59	2.17	9.44*
AgR1502	3.4	54.5	51.3	48.8	93	100	100	100	100	100	100	3.52	3.63	0.93	0.57	0.69	2.20	9.35*
RAD-MRF59	3.3	56.5	53.5	50.5	91	100	98	98	98	100	100	3.36	3.71	0.95	0.60	0.62	2.16	9.23*
KY31- ³	3.5	56.5	48.5	45.0	100	100	100	100	100	100	100	3.43	3.49	0.88	0.56	0.56	1.99	8.91
GA-29	3.5	57.0	56.0	46.3	97	100	97	99	100	100	100	3.13	3.43	1.09	0.63	0.59	2.31	8.86
AgR1521	3.0	55.0	50.3	46.3	96	100	99	98	100	100	100	3.30	3.46	1.03	0.54	0.53	2.10	8.86
RAD-ERF58	2.5	58.0	56.0	52.5	93	98	92	93	98	98	98	3.47	3.26	1.05	0.54	0.50	2.09	8.82
RAD-ERF57	3.0	56.5	50.3	46.3	96	98	96	96	98	98	97	3.17	3.60	0.95	0.50	0.56	2.00	8.77
TF0202	3.0	53.0	45.0	45.0	94	100	92	97	99	99	99	3.00	3.32	0.72	0.47	0.46	1.64	7.96
Mean	3.1	56.1	51.5	47.6	93	99	97	98	99	99	99	3.27	3.57	0.95	0.57	0.59	2.11	8.95
CV,%	23.9	2.3	5.4	4.3	6	2	4	2	2	1	1	7.20	10.92	17.60	15.97	13.35	9.72	6.95
LSD,0.05	1.0	1.8	4.0	2.9	8	3	6	3	2	2	2	0.34	0.56	0.24	0.13	0.11	0.29	0.89

Vigor score based on scale of 1 to 5 with 5 being the most vigorous seedling growth.

² Maturity rating scale: 37 = flag leaf emergence, 45 = boot swollen, 50 = beginning of inflorescence emergence, 58 = complete emergence of inflorescence, 62 = beginning of pollen shed. See Table 4 for complete scale.

³ KY 31- is the variety KY31 from which the toxic endophyte has been removed. Jesup MaxQ, AgR1502 and AgR1521 contain a non toxic endophyte. KY31+ contains the toxic endophyte. The other fescue varieties in this test do not contain an endophyte. *Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

	Seedling Vigor ¹	Maturity ²		P	ercent Sta	nd				Yield (to	ons/acre)		
	Nov 19	2012	2010	20	11	20	12	2011		20	12		2-year
Variety	2010	Apr 18	Nov 19	Apr 8	Oct 24	Mar 14	Oct 29	Total	Apr 18	Jun 19	Oct 29	Total	Total
Commercial	Varieties—A	vailable for l	Farm Use										
KY31+ ³	4.3	46.0	100	100	100	100	100	2.60	0.94	0.70	0.63	2.26	4.86*
Cajun II	3.5	54.0	100	100	100	100	100	2.34	0.98	0.68	0.55	2.21	4.55*
Jesup EF	3.5	55.0	100	100	100	100	98	2.42	1.03	0.63	0.47	2.13	4.55*
Jesup MaxQ	3.4	52.5	100	100	100	100	100	2.26	0.85	0.62	0.57	2.05	4.31
Goliath	3.3	52.0	100	100	100	100	99	2.18	0.87	0.67	0.56	2.10	4.28
Bronson	3.6	52.5	100	100	100	100	100	2.03	0.88	0.64	0.59	2.11	4.14
Cowgirl	3.9	52.5	100	100	100	100	100	2.15	0.81	0.62	0.53	1.97	4.12
Kentucky 32	3.4	48.3	100	100	100	100	100	2.31	0.75	0.58	0.47	1.80	4.11
BarOptima PLUS E34	2.6	46.0	100	100	100	98	95	2.10	0.70	0.63	0.66	1.99	4.09
Select	2.6	51.3	100	100	100	100	99	2.08	0.84	0.64	0.49	1.97	4.05
BarElite	3.3	39.0	100	100	99	98	97	1.72	0.67	0.60	0.58	1.85	3.57
Experimenta	l Varieties												
TF 0402	4.3	50.0	100	100	100	100	100	2.58	0.90	0.73	0.47	2.09	4.67*
RAD-ERF61	4.0	53.0	100	100	100	100	97	2.48	0.97	0.63	0.55	2.15	4.64*
RAD-ERF62	4.0	55.0	100	100	100	100	98	2.47	0.91	0.73	0.51	2.16	4.63*
KY31- ³	3.5	50.3	100	100	100	100	99	2.36	0.91	0.66	0.56	2.14	4.49*
Mean	3.5	50.5	100	100	100	100	99	2.27	0.87	0.65	0.55	2.07	4.34
CV,%	20.4	5.7	0	1	1	1	1	11.90	12.71	14.34	15.84	7.94	8.48
LSD,0.05	1.0	4.1	0	1	1	1	2	0.39	0.16	0.13	0.12	0.23	0.53

Table 6. Dry matter yields, seedling vigor, maturity, and stand persistence of tall fescue varieties sown September 16, 2010, at Princeton, Kentucky.

¹ Vigor score based on scale of 1 to 5 with 5 being the most vigorous seedling growth.
 ² Maturity rating scale: 37 = flag leaf emergence, 45 = boot swollen, 50 = beginning of inflorescence emergence, 58 = complete emergence of inflorescence, 62 = beginning of pollen shed. See Table 4 for complete scale.
 ³ KY 31- is the variety KY31 from which the toxic endophyte has been removed. Jesup MaxQ contains a non-toxic endophyte. BarOptima PLUS E34 contains a beneficial endophyte. KY31+ contains the toxic endophyte. The other fescue varieties in this test do not contain an endophyte.
 *Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Endophyte level. Seed with infection levels of less than 5 percent is regarded as endophyte-free. A statement to that effect will be displayed prominently on a green tag attached to the seed bag. If no tag is present, assume the seed is infected with the toxic endophyte. Several varieties, both with and without the endophyte, are adapted for use in Kentucky. With the new "novel endophyte" tall fescues, the seed tag should specify the infection level. Also, seed of these varieties should be handled carefully to preserve this infection, which means keeping seed cool and planting as soon as possible. "Novel endophyte" varieties need a high infection level to improve stand survival.

Seed quality. Buy premium-quality seed that is high in germination and purity levels and free from weed seed. Buy certified seed of improved varieties. An improved variety is one that has performed well in independent trials. The label also includes the test date (which must be within the previous nine months), the level of germination, and the amount of other crop and weed seed. Order seed well in advance of planting time to assure that it will be available when needed.

Description of the Tests

Data from seven studies are reported. Tall fescue varieties were sown at Lexington (2009, 2010, and 2011), Princeton (2010) and Quicksand (2010. The bromegrass trial was sown in Lexington in 2010. The soils at Lexington (Maury), Princeton (Crider) and Quicksand (Nolin) are welldrained silt loams. They are well suited for tall fescue and bromegrass production.

Seedings were made at the rate of 25 pounds per acre for tall fescue and 20 pounds per acre for bromegrass into a prepared seedbed with a disk drill. Plots were 5 feet by 20 feet in a randomized complete block design with four replications with a harvested plot area of 5 feet by 15 feet. Nitrogen was topdressed at 60 pounds per acre of actual nitrogen in March, after the first cutting, and again in late summer, for a total of 180 Table 7. Dry matter yields, seedling vigor, maturity, and stand persistence of tall fescue varieties sown September 14, 2011, at Lexington, Kentucky.

	Seedling	M-4	Per	cent Sta	and	,	Yield (to	ons/acre)				
	Vigor ¹ Oct 11,	Maturity ² 2012	2011	20)12				
Variety	2011	Apr 25	Oct 11	Mar 21	Oct 24	Apr 25	Jun 7	Oct 22	Total			
Commercial Varietie	s—Availab			-								
Jesup MaxQ	4.6	54.0	100	100	100	1.17	1.01	1.03	3.21*			
DuraMax GOLD	5.0	54.0	100	100	100	1.26	1.03	0.92	3.20*			
Bronson	4.6	54.0	100	100	100	1.11	1.05	0.94	3.10*			
Tower 647	5.0	45.0	100	100	100	1.05	1.10	0.92	3.07*			
BarOptima PLUS E34	4.8	45.0	100	100	100	0.95	1.03	1.05	3.03*			
Kentucky 32	4.3	56.0	100	100	100	1.06	1.05	0.86	2.97*			
Enhance	4.0	45.0	100	100	100	1.07	1.07	0.82	2.95*			
BarElite	5.0	45.0	100	100	100	0.85	1.07	0.89	2.81*			
Jesup EF	4.8	55.5	100	100	100	1.02	0.93	0.82	2.77			
KY31+ ³	5.0	46.3	100	100	100	0.80	1.01	0.94	2.75			
Martin 2 647	4.0	53.5	100	100	100	1.01	0.89	0.83	2.73			
Cajun II	4.6	54.0	100	100	100	1.00	0.90	0.83	2.73			
Select	4.8	53.5	100	100	100	1.16	0.83	0.70	2.70			
HyMark	5.0	52.5	100	100	100	0.99	0.82	0.78	2.58			
Hymark 5.0 52.5 100 100 100 0.99 0.82 0.78 2.5 Experimental Varieties												
KYFA0804	4.8	57.0	100	100	100	1.35	1.10	0.86	3.32*			
AGRFA 148	5.0	52.0	100	100	100	1.31	1.08	0.93	3.32*			
PPG-FTF 101	4.5	54.5	100	100	100	1.18	0.99	0.92	3.09*			
IS-FTF 53 HAPPE	4.3	49.3	100	100	100	1.08	0.96	1.03	3.07*			
NFTF 1411	4.9	55.0	100	100	100	1.18	0.94	0.91	3.02*			
KY31- ³	5.0	48.0	100	100	100	0.96	1.13	0.91	3.00*			
B-11.BC	4.6	53.5	100	100	100	1.07	0.89	0.94	2.90*			
XLFTF	4.5	49.8	100	100	100	0.99	1.00	0.80	2.79*			
IS-FTF 54	3.9	57.5	100	100	100	1.09	0.87	0.79	2.76			
KYFA0905	4.6	45.0	100	100	100	0.90	0.84	0.87	2.61			
KYFA0902	4.6	45.0	100	100	100	0.81	0.88	0.79	2.48			
Mean	4.6	51.2	100	100	100	10.60	0.98	0.88	2.92			
CV,%	7.7	3.8	0	0	0	20.48	15.57	11.62	13.07			
LSD,0.05	0.5	2.7	0	0	0	0.31	0.22	0.14	0.54			

¹ Vigor score based on scale of 1 to 5 with 5 being the most vigorous seedling growth.

² Maturity rating scale: 37 = flag leaf emergence, 45 = boot swollen, 50 = beginning of inflorescence emergence, 58 = complete emergence of inflorescence, 62 = beginning of pollen shed. See Table 4 for complete scale.

³ KY 31- is the variety KY31 from which the toxic endophyte has been removed. Jesup MaxQ, DuraMax GOLD, Tower 647, Martin 2 647 and IS-FTF 53 HAPPE contain a non-toxic endophyte, BarOptima PLUS E34 contains a beneficial endophyte. KY31+ contains the toxic endophyte. The other fescue varieties in this test do not contain an endophyte.

*Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

pounds per acre over the season. The tests were harvested using a sickle-type forage plot harvester to simulate a spring cut hay/summer grazing/fall stockpile management system. The first cutting was harvested when all tall fescue and bromegrass varieties had reached at least the boot stage. Fresh weight samples were taken at each harvest to calculate dry matter production. Management practices for these tests regarding establishment, fertility, weed control, and harvest timing were in accordance with University of Kentucky recommendations.

Results and Discussion

Weather data for Lexington, Princeton and Quicksand are presented in tables 1, 2 and 3.

Ratings for maturity (see Table 4 for maturity scale), stand, and dry matter yields (tons/A) are reported in tables 5 through 11. Yields are given by cutting date for 2012 and as total annual production. Stated yields are adjusted for percent weeds, therefore the tonnage given is for crop only. Varieties are listed by total yield in descending order. Experimental varieties are listed separately at the bottom of the tables.

		-	-		-				r	-			-	
	Seedling Vigor ¹		ırity ²			rcent Sta						ons/acre)		1
	Oct 26,	2011	2012	2010	20	11	20	12	2011		20	12		2-year
Variety	2010	May 9	Apr 25	Oct 26	Mar 16	Nov 7	Mar 21	Oct 23	Total	Apr 25	Jun 8	Oct 22	Total	Total
KYFA9732/E5	3.4	54.5	48.5	100	100	99	100	100	5.11	1.21	0.68	0.72	2.61	7.72*
KYFA9908/E1	3.0	52.0	45.0	100	97	97	97	97	5.22	1.06	0.75	0.49	2.30	7.51*
KYFA0701	3.3	56.0	49.3	98	99	100	100	100	5.05	1.19	0.61	0.64	2.44	7.49*
KYFA9908/E3	2.8	53.5	46.8	98	96	99	96	96	5.14	1.06	0.63	0.56	2.25	7.39*
KYFA9732EF	2.5	54.5	49.3	99	95	96	95	96	5.35	1.05	0.55	0.38	1.98	7.33*
KYFA0601	2.9	56.0	50.8	98	99	99	99	99	4.89	1.18	0.60	0.63	2.42	7.30*
KY31- ³	3.3	56.0	46.8	97	97	98	99	98	4.74	1.21	0.65	0.63	2.49	7.23*
KYFA9908/E4	2.6	54.5	45.0	99	97	96	97	96	4.99	1.02	0.57	0.63	2.22	7.21*
KYFA9732/E1	3.6	54.0	45.0	100	98	99	99	98	4.97	1.05	0.65	0.48	2.18	7.14*
KYFA9908/E5	2.3	54.0	48.0	98	88	94	97	96	4.60	1.20	0.64	0.66	2.50	7.10*
AgR1502	2.3	56.0	53.0	97	95	97	97	98	4.61	1.15	0.60	0.70	2.44	7.05*
KYFA9913/E5	3.0	54.5	46.3	97	95	97	97	98	4.67	1.16	0.62	0.60	2.38	7.05*
KYFA9913EF	2.8	56.0	50.3	99	99	99	98	98	4.88	0.84	0.65	0.62	2.11	6.99*
KYFA9905/E2	3.9	54.5	46.8	98	100	100	100	99	4.81	1.05	0.56	0.57	2.17	6.99*
KYFA9913/E2	2.4	54.0	51.5	97	96	97	97	98	4.73	1.04	0.64	0.56	2.24	6.97*
KYFA9905EF	3.0	55.0	45.0	97	97	97	98	98	4.76	1.08	0.55	0.51	2.14	6.91*
KYFA9905/E5	3.0	54.0	46.3	100	99	100	100	99	4.62	1.07	0.62	0.59	2.27	6.89*
KYFA9908EF	3.5	54.0	48.0	99	97	96	96	97	4.76	0.94	0.62	0.56	2.12	6.88*
KYFA9732/E2	3.0	54.0	48.0	99	97	98	98	98	4.87	0.91	0.60	0.49	2.01	6.87*
AgR1521	2.1	55.5	52.0	94	95	97	97	98	4.32	1.35	0.56	0.58	2.49	6.80*
KY31+3	2.9	54.0	45.0	98	95	96	98	99	4.48	0.97	0.70	0.62	2.28	6.76
KYFA9913/E1	3.3	53.5	48.0	97	95	97	97	96	4.68	1.05	0.49	0.51	2.05	6.73
KYFA9905/E1	2.9	53.5	46.3	98	99	100	100	99	4.61	0.89	0.54	0.52	1.96	6.56
KYFA0901	2.9	56.0	53.5	98	95	96	96	96	4.39	1.00	0.50	0.49	1.98	6.37
Mean	2.9	54.6	48.1	98	97	98	98	98	4.80	1.07	0.61	0.57	2.25	7.05
CV,%	25.2	1.8	5.5	2	5	3	2	2	10.63	15.83	14.65	17.37	10.68	9.26
LSD,0.05	1.0	1.4	3.7	3	7	4	3	3	0.72	0.72	0.24	0.13	0.14	0.92

Table 8. Dry matter yields, seedling vigor, maturity, and stand persistence of tall fescue varieties sown September 6, 2010, at Lexington, Kentucky.

¹ Vigor score based on scale of 1 to 5 with 5 being the most vigorous seedling growth.

² Maturity rating scale: 37 = flag leaf emergence, 45 = boot swollen, 50 = beginning of inflorescence emergence, 58 = complete emergence of

inflorescence, 62 = beginning of pollen shed. See Table 4 for complete scale.

³ KY31- is the variety KY31 from which the toxic endophyte has been removed. KY31+ contains the toxic endophyte. AgR1502 and AgR1521 contain a non-toxic endophyte. E1 through E5 are non-toxic endophytes. The other varieties do not contain an endophyte.

*Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Statistical analyses were performed on all data to determine if the apparent differences are truly due to varietal differences or just to chance. In the tables, varieties that are not significantly different from the top variety in the column for that characteristic are marked with one asterisk (*). To determine if two varieties are truly different, compare the difference between them and the LSD (Least Significant Difference) at the bottom of the column. If the difference is equal to or greater than the LSD, the varieties are truly different when grown under the conditions at the given locations. The Coefficient of Variation (CV) is a measure of the variability of the data and is included for each column of means. Low variability is desirable, and increased variability within a study results in higher CVs and larger LSDs.

Tables 12 and 14 summarize information about distributors, and yield performance across locations for all varieties currently included in tests discussed in this report. Varieties are listed in alphabetical order by species, with the experimental varieties at the bottom. Remember that experimental varieties are not available for farm use; commercial varieties can be purchased from agricultural distributors. In tables 12 and 14, an open block indicates that the variety was not in that particular test (labeled at the top of the column); an "x" in the block means that the variety was in the test but yielded significantly less than the top-yielding variety. A single asterisk (*) means that the variety was not significantly different from the top variety based on the 0.05 LSD. It is best to choose a variety that has performed well over several years and locations. Remember to consider the relative spring maturity and the distribution of yield across the growing season when evaluating productivity of tall fescue and bromegrass varieties (tables 5 through 11).

Tables 13 and 15 are summaries of vield data from 1999 to 2012 of commercial varieties that have been entered in the Kentucky trials. The data is listed as a percentage of the mean of the commercial varieties entered in each specific trial. In other words, the mean for each trial is 100 percent-varieties with percentages over 100 yielded better than average and varieties with percentages less than 100 yielded lower than average. Direct, statistical comparisons of varieties cannot be made using the table 13 and 15 summaries, but these comparisons do help to identify varieties for further consideration. Varieties that have performed better than average over many

Table 9. Dry matter yields, seedling vigor, maturity, a	and stand persistence of tall fescue varieties sown	September 16, 2010, at Princeton, Kentucky.

	Seedling Vigor ¹	Maturitv ²		Pe	ercent Sta	nd				Yield (to	ons/acre)		
	Nov 19,	2012	2010	20	011	20	12	2011		20	12		2-year
Variety	2010	Apr 18	Nov 19	Apr 8	Oct 24	Mar 14	Oct 29	Total	Apr 18	Jun 19	Oct 29	Total	Total
KYFA9732/E5	3.6	46.3	100	99	100	100	100	2.64	1.03	0.46	0.62	2.11	4.75*
KY31+ ³	4.1	44.8	100	100	100	100	100	2.78	0.78	0.55	0.60	1.94	4.72*
KYFA9908/E3	3.5	47.5	100	100	100	100	97	2.58	0.80	0.47	0.66	1.93	4.51*
KYFA0701	3.8	49.8	100	100	100	100	99	2.64	0.85	0.36	0.61	1.82	4.46*
KYFA9908/E5	3.5	46.3	100	100	100	100	100	2.49	0.78	0.51	0.60	1.90	4.39*
KYFA9913/E5	2.5	49.3	100	99	100	100	99	2.46	0.78	0.44	0.66	1.89	4.35*
KYFA9905/E5	4.1	50.0	100	100	100	100	98	2.63	0.77	0.43	0.49	1.69	4.32*
KY31- ³	3.5	48.8	100	100	100	100	100	2.46	0.93	0.39	0.54	1.86	4.32*
KYFA9732/E1	3.3	46.3	100	100	100	100	97	2.42	0.90	0.40	0.57	1.87	4.29*
KYFA9913/E2	2.9	46.8	100	99	100	100	99	2.42	0.78	0.45	0.61	1.84	4.26*
KYFA9908/E4	3.6	48.0	100	100	100	100	98	2.34	0.80	0.40	0.71	1.90	4.24*
KYFA9732/E2	4.1	43.5	100	99	100	100	94	2.44	0.74	0.42	0.63	1.79	4.24*
KYFA9908/E1	4.1	42.8	100	100	100	99	97	2.47	0.66	0.47	0.61	1.74	4.21*
KYFA9908EF	3.1	48.5	100	98	100	100	96	2.42	0.82	0.42	0.54	1.77	4.20*
AgR1502	2.6	51.0	100	98	100	99	99	2.38	0.86	0.36	0.59	1.81	4.19*
KYFA9732EF	3.9	46.3	100	100	100	100	98	2.42	0.76	0.38	0.61	1.75	4.17
KYFA9913/E1	3.0	47.5	100	97	98	98	100	2.26	0.80	0.40	0.70	1.91	4.16
AgR1521	2.8	51.0	100	99	100	100	100	2.32	0.90	0.38	0.56	1.84	4.16
KYFA9913EF	3.0	51.0	100	100	100	99	97	2.33	0.76	0.42	0.60	1.78	4.11
KYFA9905/E2	3.8	47.5	100	100	100	100	99	2.39	0.72	0.36	0.53	1.61	4.00
KYFA0601	4.1	50.3	100	100	100	100	99	2.20	0.91	0.39	0.46	1.76	3.96
KYFA9905/E1	3.9	46.3	100	98	100	100	100	2.25	0.74	0.41	0.54	1.69	3.93
KYFA0901	3.5	50.8	100	100	100	100	98	2.01	0.80	0.41	0.58	1.79	3.80
KYFA9905EF	3.6	49.3	100	100	100	100	98	2.22	0.68	0.39	0.49	1.55	3.78
Mean	3.5	47.9	100	99	100	100	98	2.42	0.81	0.42	0.59	1.81	4.23
CV,%	21.0	5.4	0	1	1	1	3	12.69	17.65	16.85	16.48	10.09	9.47
LSD,0.05	1.0	3.7	0	2	1	1	4	0.43	0.20	0.10	0.14	0.26	0.57

¹ Vigor score based on scale of 1 to 5 with 5 being the most vigorous seedling growth.

² Maturity rating scale: 37 = flag leaf emergence, 45 = boot swollen, 50 = beginning of inflorescence emergence, 58 = complete emergence of

inflorescence, 62 = beginning of pollen shed. See Table 4 for complete scale.

³ KY31- is the variety KY31 from which the toxic endophyte has been removed. KY31+ contains the toxic endophyte. AgR1502 and AgR1521 contain a nontoxic endophyte. E1 through E5 are non-toxic endophytes. The other varieties do not contain an endophyte.

*Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

years and at several locations have very stable performance, while others may have performed very well in wet years or on particular soil types. These details may influence variety choice, and the information can be found in the yearly reports. See the footnotes in tables 13 and 15 to determine to which yearly report to refer.

Summary

Selecting a good variety of tall fescue and bromegrass is an important first step in establishing a productive stand of grass. Proper management, beginning with seedbed preparation and continuing throughout the life of the stand, is necessary for even the highest-yielding variety to produce to its genetic potential. The following is a list of University of Kentucky Cooperative Extension publications related to tall fescue management available from your county Extension office and are listed in the "Publications" section of the UK Forage Web site, www. uky.edu/Ag/Forage:

- Lime and Fertilizer Recommendations (AGR-1)
- Grain and Forage Crop Guide for Kentucky (AGR-18)
- Tall Fescue (AGR-59)
- Establishing Forage Crops (AGR-64)
- Tall Fescue in Kentucky (AGR-108)
- Forage Identification and Use Guide (AGR-175)
- Rotational Grazing (ID-143)

About the Authors

G.L. Olson is a research specialist and S.R. Smith and G.D. Lacefield are Extension professors in Forages. T.D. Phillips is an associated professor in Tall Fescue Breeding, and D.C. Ditsch is an Extension professor in Feed Production.

	Seedling	BA - 4		Pe	rcent Sta	nd				Yie	ld (tons/a	cre)		
	Vigor ¹ Nov 11,	Maturity ² 2011	2010	20	11	20	12	2011			2012	,		2-year
Variety	2010	May 13	Nov 11	Mar 29	Nov 8	Mar 20	Nov 1	Total	Apr 20	May 24	Aug 28	Oct 23	Total	Total
KY31+ ³	3.1	53.3	100	99	100	100	100	5.31	1.28	1.17	1.37	1.14	4.96	10.27*
KYFA9905/E5	3.1	54.5	100	100	100	100	100	4.56	1.19	1.17	1.36	0.93	4.64	9.21*
AgR1502	2.4	58.0	100	97	99	99	99	4.53	1.45	1.17	1.19	0.86	4.67	9.20*
KY31- ³	3.5	54.5	100	99	98	99	100	4.56	1.24	1.15	1.19	0.74	4.32	8.88*
KYFA9905EF	3.1	55.0	100	99	100	99	99	5.12	0.97	1.05	1.10	0.64	3.75	8.88*
KYFA9732/E5	3.5	57.0	100	98	100	100	100	4.83	1.41	1.11	0.77	0.73	4.02	8.86*
KYFA0601	3.1	58.5	100	99	100	100	100	4.43	1.34	1.14	1.13	0.76	4.38	8.81*
AgR1521	1.5	53.5	99	96	99	100	100	4.31	1.41	0.98	0.88	1.07	4.34	8.65*
KYFA0701	2.8	56.5	100	98	100	100	100	4.88	1.06	0.92	0.90	0.76	3.65	8.53*
KYFA9913/E5	2.8	56.0	99	95	98	96	97	4.46	1.10	1.03	1.04	0.87	4.05	8.51*
KYFA9908EF	2.8	52.3	100	96	96	97	97	4.72	0.93	1.02	0.96	0.84	3.76	8.48*
KYFA9732/E2	2.8	56.5	100	98	99	98	98	4.54	1.12	1.02	0.86	0.86	3.86	8.41*
KYFA9913/E2	2.8	57.5	100	96	95	95	95	4.56	0.94	1.02	0.94	0.90	3.80	8.36
KYFA9908/E4	2.9	53.8	100	96	98	98	99	4.49	0.87	1.07	1.10	0.80	3.84	8.33
KYFA9908/E5	2.6	53.8	100	97	99	99	99	4.29	1.10	1.17	0.87	0.85	3.99	8.28
KYFA9908/E1	2.9	55.5	100	96	99	98	98	4.25	1.08	1.16	0.80	0.82	3.86	8.11
KYFA9913EF	2.8	57.5	99	93	96	97	98	4.25	1.02	1.00	0.92	0.82	3.76	8.00
KYFA9732/E1	3.3	54.8	100	100	100	100	99	4.56	0.86	0.87	0.86	0.76	3.35	7.91
KYFA9905/E2	3.1	56.0	100	99	99	98	99	4.29	1.05	0.94	0.90	0.70	3.60	7.88
KYFA9732EF	2.5	57.0	100	99	100	100	100	4.24	1.08	0.93	0.79	0.83	3.63	7.87
KYFA9908/E3	2.5	55.5	100	95	95	95	96	3.94	0.97	1.11	1.09	0.61	3.78	7.72
KYFA9905/E1	3.5	53.0	100	99	100	100	100	4.13	0.89	0.91	0.90	0.70	3.41	7.54
KYFA0901	2.4	54.5	100	92	94	95	97	3.82	1.13	0.86	0.87	0.73	3.59	7.41
KYFA9913/E1	2.9	57.5	100	97	96	95	95	3.99	0.82	0.96	0.63	0.48	2.89	6.88
Mean	2.8	55.5	100	97	98	98	98	4.46	1.10	1.04	0.98	0.80	3.91	8.37
CV,%	26.0	5.9	1	2	2	2	2	20.22	15.96	15.82	26.79	34.07	17.16	16.04
LSD.00.05	1.0	4.6	1	3	3	3	2	1.27	0.25	0.23	0.37	0.38	0.95	1.89

Table 10. Dry matter yields, seedling vigor, maturity, and stand persistence of tall fescue varieties sown September 24, 2010, at Quicksand, Kentucky.

¹ Vigor score based on scale of 1 to 5 with 5 being the most vigorous seedling growth.

² Maturity rating scale: 37 = flag leaf emergence, 45 = boot swollen, 50 = beginning of inflorescence emergence, 58 = complete emergence of inflorescence, 62 = beginning of pollen shed. See Table 4 for complete scale.

³ KY31- is the variety KY31 from which the toxic endophyte has been removed. KY31+ contains the toxic endophyte. AgR1502 and AgR1521 contain a non-toxic endophyte. E1 through E5 are non-toxic endophytes. The other varieties do not contain an endophyte.

*Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 11. Dry matter yields, seedling vigor, maturity, and stand persistence of bromegrass varieties sown September 6, 2010, at Lexington, Kentucky.

		Coodling		Matu	irity ²			Per	cent Sta	and			,	Yield (to	ons/acre)	
		Seedling Vigor ¹	20	11	20	12	2010	20	11	20	12			20	12		
Variety	Туре	Oct 14, 2010	May 13	Jun 20	Apr 30	Jun 7	Oct 14	Mar 17	Nov 7	Mar 21	Oct 23	2011 Total	Apr 30	Jun 8	Oct 22	Total	2-year Total
Commercial Va	rieties—Ava	ilable for Fa	rm Use														
MacBeth	meadow	2.5	62.0	29.0	56.5	58.0	70	70	89	90	94	4.19	1.36	0.73	0.88	2.97	7.16*
Hakari	Alaska	4.0	53.5	53.0	39.0	58.0	90	96	89	88	77	4.83	0.79	0.83	0.37	1.99	6.82*
Doina	smooth	3.8	55.5	29.0	54.0	36.3	90	88	88	91	94	3.97	1.20	0.50	0.64	2.35	6.31*
Bigfoot	meadow	2.3	60.0	29.0	56.0	36.3	85	85	93	92	92	3.65	1.09	0.66	0.80	2.55	6.20*
Olga	smooth	2.8	55.0	29.0	52.5	58.0	86	87	92	92	94	3.67	0.80	0.57	0.55	1.92	5.59
AC Knowles	hybrid	2.8	55.0	60.5	55.5	58.0	86	81	91	89	91	2.96	0.71	0.60	0.54	1.86	4.81
Experimental V	arieties																
BAR BcF1FRRL	meadow	2.5	59.0	29.0	57.0	58.0	76	74	91	90	93	4.40	1.29	0.65	0.81	2.75	7.15*
BAR BiF1GRL	smooth	4.5	55.0	29.0	53.0	36.3	93	94	93	95	95	3.91	1.38	0.49	0.64	2.52	6.43*
KYBI0101	smooth	-	56.5	29.0	53.0	29.0	6	10	29	35	49	2.59	0.86	0.40	0.57	1.84	4.43
BAR PAL16	hybrid	-	57.5	60.5	59.0	29.0	6	6	25	28	33	2.14	1.05	0.35	0.54	1.95	4.09
Mean		3.3	56.7	36.9	53.4	46.1	71	71	79	80	82	3.59	1.07	0.58	0.63	2.28	5.87
CV,%		22.7	2.5	2.3	2.5	19.6	10	12	7	5	14	21.90	29.17	15.79	16.63	17.96	17.57
LSD,0.05		1.1	2.1	1.2	1.9	13.0	11	12	8	6	16	3.14	0.45	0.13	0.15	0.59	1.49

¹ Vigor score based on scale of 1 to 5 with 5 being the most vigorous seedling growth.
 ² Maturity rating scale: 37 = flag leaf emergence, 45 = boot swollen, 50 = beginning of inflorescence emergence, 58 = complete emergence of inflorescence, 62 = beginning of pollen shed. See Table 4 for complete scale.
 *Not significantly different from the highest numerical value in the column, based on the 0.05 LSD.

Table 12. Performance of tall fescue varieties across years and locations.

	Lexington							Prine	Quicksand				
			2009 ¹		-	010	2011		1	10	1		010
Variety	Proprietor/KY Distributor	10 ²	11	12	11	12	12	11	12	11	12	11	12
	Available for Farm Use	1											
BarElite	Barenbrug USA						*	x ³	х				
BarOptima PLUS E34	Barenbrug USA						*	х	x				<u> </u>
Bronson	Ampac Seed	*	*	*			*	X	*				Ļ
Cajun II	Smith Seed Services						Х	*	*				<u> </u>
Cowgirl	Rose-Agri Seeds							х	х				
DuraMax GOLD	DLF International Seeds						*						<u> </u>
Enhance	Allied Seed						*						
Goliath	Ampac Seed	х	*	*				х	*				
HyMark	Fraser Seeds						х						
Kentucky 32	Oregro Seeds						*	*	х				
KY31+ ⁴	Ky Agric. Exp. Station/Public	*	*	*	х	*	х	*	*	*	*	*	*
Jesup EF	Pennington Seed						х	*	*				
Jesup MaxQ	Pennington Seed	*	*	*			*	*	*				
Martin 2 647	DLF International Seeds						х						
Select	FFR/Southern States	*	*	х			х	х	x				
Tower 647	DLF International Seeds						*						
5CAN	Brett Young	х	x	х									
Experimental Varieti													
AGRFA 148	AgResearch						*						
AgR1502	AgResearch	*	*	*	х	x				*	х	*	*
AgR1521	AgResearch	*	*	x	x	*				х	х	*	*
B-11.BC	Ampac Seed						*						
GA-29	Univ of Georgia	х	*	*									
IS FTF 53 HAPPE	DLF International Seeds						*						
IS FTF 54	DLF International Seeds						*						
KY31- ⁴	KY Agric. Exp. Station	*	*	х	*	*	*	*	*	*	*	*	*
KYFA0601	KY Agric. Exp. Station				*	x				х	х	*	*
KYFA0701	KY Agric. Exp. Station	*	*	*	*	x				*	x	*	х
KYFA0804	KY Agric. Exp. Station						*						
KYFA0901	KY Agric. Exp. Station				x	x				х	х	x	X
KYFA0902	KY Agric. Exp. Station						х						1
KYFA0905	KY Agric. Exp. Station						x						
KYFA9732 EF	KY Agric. Exp. Station				*	x	~			*	x	*	X
KYFA9732/E1	KY Agric. Exp. Station				*	x				*	*	*	X
KYFA9732/E2	KY Agric. Exp. Station				*	x				*	x	*	X
KYFA9732/E5	KY Agric. Exp. Station				*	*				*	*	*	*
KYFA9905 EF	KY Agric. Exp. Station				*	x				x	x	*	x
KYFA9905/E1	KY Agric. Exp. Station				x	X				x	x	*	X
KYFA9905/E2	KY Agric. Exp. Station				*	X				*	x	*	x
KYFA9905/E5	KY Agric. Exp. Station				x	X				*	x	*	*
KYFA9908 EF	KY Agric. Exp. Station				*	X				*	x	*	x
KYFA9908/E1	KY Agric. Exp. Station				*	X				*	X	*	X
KYFA9908/E3	KY Agric. Exp. Station				*	x				*	*	×	
KYFA9908/E4	KY Agric. Exp. Station				*						*	X *	X
KYFA9908/E5						X *				X *	*	*	X
KYFA9908/E5	KY Agric. Exp. Station				X *							*	X
	KY Agric. Exp. Station				*	X				X	X *		X
KYFA9913/E1	KY Agric. Exp. Station				*	X				X *		X *	X
KYFA9913/E2	KY Agric. Exp. Station				*	X				*	X *	*	X *
KYFA9913/E5	KY Agric. Exp. Station				*	x	*		-	*	~	*	*
NFTF 1411	Noble Foundatiion						*						+
PPG-FTF 101	Mountain View Seeds						*						
RAD ERF57	Radix Research, Inc.	X	*	Х									<u> </u>
RAD-ERF58	Radix Research, Inc.	*	x	x									<u> </u>
RAD-ERF61	Radix Research, Inc.	<u> </u>			<u> </u>		ļ	*	*				<u> </u>
RAD-ERF62	Radix Research, Inc.				ļ		ļ	*	*				<u> </u>
RAD-MRF59	Radix Research, Inc.	*	*	*									
TF 0202	FFR/Southern States	х	x	x									
TF 0402	FFR/Southern States							*	*				
XLFTF	ProSeeds Marketing						*						

¹ Establishment year.

² Harvest year.
 ³ x in the box indicates the variety was in the test but yielded significantly less than the top yielding variety in the test. Open boxes indicate the variety was

⁴ KY31- is the variety KY31 from which the toxic endophyte has been removed. KY31+ contains the toxic endophyte. Jesup MaxQ, AgR1502 and AgR1521 contain a non-toxic endophyte. Baroptima PLUS E34 contains a beneficial endophyte. E1 through E5, AR584, HAPPE, GOLD and 647 are non-toxic endophytes. The other varieties do not contain an endophyte.

*Not significantly different from the highest yielding variety in the test.

Table 13. Summary of Kentucky tall fescue yield trials 1999-2012 (yield shown as a percentage of the mean of the commercial varieties in the trial).

		Lexington				Princeton						Quicksand							
		99 1,2	01	03	05	07	09	98	00	02	04	06	08	10	99	01	03	05	Mean ³
Variety	Proprietor	2-yr ⁴	3-yr	2-yr	3-yr	3-yr	3-yr	2-yr	2-yr	3-yr	3-yr	3-yr	3-yr	2-yr	2-yr	2-yr	2-yr	4-yr	(#trials)
Atlas	ProSeeds Marketing	107													89				98(2)
Atlas Select	ProSeeds Marketing												96						-
Aprilia	ProSeeds Marketing												94						-
BarElite	Barenbrug USA					99								84					92(2)
Bariane	Barenbrug USA			87	99													95	94(3)
Barolex	Barenbrug USA				90														-
BarOptima PLUS E34	Barenbrug USA				122	101								96					106(3)
BAR 9 TMPO	Barenbrug USA	96													97				97(2)
Bronson	Ampac Seed				88	100	105							98				102	99(5)
Bull	Improved Forages			98	102				102	104							97		101(5)
Cajun II	Smith Seed Services													107					_
Carmine	DLF International		99													97			98(2)
Cowgirl	Rose-AgriSeeds												102	97					100(2)
DLF-B	DLF International	96											102	51					-
DuraMax GOLD	DLF International											106							-
Enhance	Allied Seed										107								_
Estancia/	Mountain View			102						101	107								102(2)
ArkShield	Seeds			102						101									
Festival	Pickseed West		107								102					107			105(3)
Fuego	Advanta Seeds	99																	-
Goliath	Ampac Seed						100							101					101(2)
Hoedown	DLF International		104													106			105(2)
HyMark	Fraser Seeds												102						-
Jesup EF	Pennington Seed							106						107					107(2)
Jesup MaxQ	Pennington Seed				98	104	110			94			95	102			100	102	101(8)
Johnstone	ProSeeds Marketing	95	108												95				99(3)
KENHY	KY Agric Exp Sta.										89								-
Kentucky 32	Oregro Seeds												99	97					98(2)
Kokanee	Ampac Seed		89						86										88(2)
KY31+5	KY Agric Exp Sta.	102	118	112	108	105	102	122	108	104		104	93	115	107	124	98	110	108(16)
Maximize	Turf-Seed	96	95												105	93			97(4)
Nanryo	Jap. Grassland ForageSeed/USDA- ARS, El Reno, OK					99													_
Noria	ProSeeds Marketing					100													-
RAD-ERF50	Radix Research, Inc.												113						-
Resolute	Ampac Seed		90													65			78(2)
Savory	DLF International											92							-
Seine	Advanta Seeds	99									96								98(2)
Select	FFR/Sou. St.	106	106	94	99	102	98	105	105	97	105	102	105	96	107	112	102	91	102(17)
Stockman	Seed Research of OR			108							101	98					102		102(17)
Texoma MaxQ II	Pennington Seed			100	95						101	70					105		-
TF0203G	Seed Research of OR					90													-
TF33	Barenbrug USA							70											_
Tuscany	Forage Genetics	-	112					, 0											_
Tuscany II	Seed Research of OR		112									98							_
Vulcan	International Seeds							97				90							_
5CAN							01	31											
	Brett Young			l	l		86			l		L	l		L		L	L	-

¹ Year trial was established.

Year trial was established.
 Use this summary table as a guide in making variety decisions, but refer to specific yearly reports to determine statistical differences in forage yield between varieties. To find actual yields, look in the yearly report for the final year of each specific trial. For example, the Lexington trial planted in 1999 was harvested two years, so the final report would be "2001 Tall Fescue Report" archived in the KY Forage Web site at <www.uky.edu/Ag/Forage>.
 Mean only presented when respective variety was included in two or more trials.
 Number of years of data.
 "+" indicates variety contains the toxic endophyte.

Table 14. Performance of bromegrass varieties at Lexington.

		-	-			
		Proprietor/KY	20	10 ¹		
		Distributor	2011 ²	2011		
Commercial Va	rieties—Ava	ilable for Farm Use				
AC Knowles	hybrid	-	x ³	х		
Bigfoot	hybrid	Grassland Oregon	х	*		
Doina	smooth	Barenbrug USA	*	х		
Hakari	Alaska	Barenbrug USA	*	х		
MacBeth	meadow	Cisco Seeds	*	*		
Olga	smooth	Barenbrug USA	х	х		
Experimental V	arieties					
BAR BcF1FRRL	meadow	Barenbrug USA	*	*		
BAR BiF1GRL	smooth	Barenbrug USA	*	*		
BAR PAL 16	hybrid	Barenbrug USA	х	х		
KYBI0101	smooth	KY Agric. Exp. Station	х	х		
Ectablichmont	voar	· · ·				

¹ Establishment year.

² Harvest year.

³ x in the box indicates the variety was in the test but yielded significantly less than the top yielding variety in the test. Open boxes indicate the variety was not in the test.

*Not significantly different from the highest yielding variety in the test.

Table 15. Summary of Kentucky bromegrass trials 2006-2012 (yield shown as a percentage of the mean of the commercial varieties in the trial).

		Proprietor/KY	2006 ^{1,2}	2008	2010	Mean ³	
Variety	Туре	Distributor	4-yr ⁴	3-yr	2-yr	(#trials)	
AC Knowles	hybrid	-	85		78	82(2)	
Bigfoot	hybrid	Grassland Oregon	108	116	101	108(3)	
Canterbury	mountain	Barenbrug USA		79		-	
Doina	smooth	Barenbrug USA		114	103	108(2)	
Fleet	meadow	-	110			-	
Hakari	Alaska	Barenbrug USA		85	111	98(2)	
MacBeth	meadow	Cisco Seeds		136	116	126(2)	
Olga	smooth	Barenbrug USA		116		104(2()	
Peak	smooth	Allied Seed		97		-	
Persister	prairie	-		72		-	
RAD-BI29	smooth	Columbia Seeds	96	86		91(2)	

¹ Year trial was established.

² Use this summary table as a guide in making variety decisions, but refer to specific yearly reports to determine statistical differences in forage yield between varieties. To find actual yields, look in the yearly report for the final year of each specific trial. For example, the Lexington trial planted in 2006 was harvested four years, so the final report would be "2009 Tall Fescue and Brome Report" archived in the KY Forage Web site at <<www.uky.edu/Ag/Forage>.

³ Mean only presented when respective variety was included in two or more trials.

⁴ Number of years of data.

Mention or display of a trademark, proprietary product, or firm in text or figures does not constitute an endorsement and does not imply approval to the exclusion of other suitable products or firms.

The College of Agriculture is an Equal Opportunity Organization. 12-2012